Charge-transfer and the hydrogen bond: spectroscopic and structural implications from electronic structure calculations.
نویسندگان
چکیده
The absolutely localized molecular orbital (ALMO) model is a fully variational approach which permits polarization of molecules interacting in a cluster while prohibiting charge-transfer (or dative interactions) between individual molecules. The ALMO model can be applied within any density functional theory calculation--the B3LYP functional is employed in this work. ALMO DFT calculations of observables such as optimized geometry, vibrational frequencies and their intensities, and vertical detachment energies are performed for the water dimer, the chloride-water complex and the cyanide-water complex. The vibrational spectra are obtained both within the harmonic approximation and by quasiclassical trajectory simulations. By comparing these ALMO DFT calculations with full DFT calculations using precisely the same functional and basis, the role of charge-transfer on observables in these model hydrogen bonding systems can be assessed. The results can be further interpreted using ALMO-based energy decomposition analysis, which help to reveal the origin of sensitivity or insensitivity of observables to dative interactions. Analysis of the results also suggests that the B3LYP functional, while qualitatively adequate, appears to somewhat overestimate charge-transfer effects.
منابع مشابه
Density Functional Studies on Crystal Structure and electronic properties of Potassium Alanate as a candidate for Hydrogen storage
Potassium Alanate is one of the goal candidates for hydrogen storage during past decades. In this report, initially the Density Functional Theory was applied to simulate the electronic and structural characteristic of the experimentally known KAlH4 complex hydride. The relaxation of unit cell parameters and atomic positions was performed until the total residual force reduced less than 0.001ev ...
متن کاملComputational study of electronic, spectroscopic and chemical properties of Cun(n=2-8) nanoclusters for CO adsorption
First-principle calculations were carried out to investigate the adsorption of CO over Cun nanoclusters. The structural, spectroscopic and electronic properties like optimized geometries, HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy levels, binding energy, adsorption energy, vibrational frequency and density of states (DOSs) of the p...
متن کاملComputational study of electronic, spectroscopic and chemical properties of Cun(n=2-8) nanoclusters for CO adsorption
First-principle calculations were carried out to investigate the adsorption of CO over Cun nanoclusters. The structural, spectroscopic and electronic properties like optimized geometries, HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy levels, binding energy, adsorption energy, vibrational frequency and density of states (DOSs) of the p...
متن کاملElectronic Structure and Properties of Anticancer Active Molecule Ansa-titanocene Dichloride
A DFT study of the electronic properties of ansa-titanocene dichloride is reported. Molecular orbital analysis, polarizability, hyperpolarizability, thermodynamic analysis and natural bond orbital (NBO) theory are the main aim of the present research. The computed structural parameters show a good agreement with the similar experimental results. The calculated HOMO and LUMO energies show that c...
متن کاملQuantum Chemical Modeling of N-(2-benzoylphenyl)oxalamate: Geometry Optimization, NMR, FMO, MEP and NBO Analysis Based on DFT Calculations
In the present work, the quantum theoretical calculations of the molecular structure of the (N-(2-benzoylphenyl) oxalamate has been investigated and are evaluated using Density Functional Theory (DFT). The geometry of the title compound was optimized by B3LYP method with 6-311+G(d) basis set. The theoretical 1H and 13C NMR chemical shift (GIAO method) values of the title compound are calculated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Faraday discussions
دوره 150 شماره
صفحات -
تاریخ انتشار 2011